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ABSTRACT. By means of generalized Riccati transformation and averaging technique, we estab-

lish some oscillation criteria for the second-order neutral Emden-Fowler delay dynamic equation of

mixed type

(r(t)x∆(t))∆ + q1(t)|y(δ(t))|α−1y(δ(t)) + q2(t)|y(δ(t))|β−1y(δ(t)) = 0,

on a time scale T. Our results as a special case when T = R improve some well known oscillation

criteria for second order neutral Emden-Fowler delay differential equation of mixed type, and when

T = N, T = hN, and T = qN0 , i.e., for neutral delay difference equations, neutral delay difference

equations with constant step size, and q-neutral difference equations with variable step size. The

results obtained here are essentially new and can be applied to different types of time scales. Some

applications and examples are considered to illustrate the main results.

AMS (MOS) Subject Classification. 39A10

1. INTRODUCTION

Consider the second order neutral Emden-Fowler dynamic equation of mixed type

(1.1) (r(t)x∆(t))∆ + q1(t)|y(δ(t))|α−1y(δ(t)) + q2(t)|y(δ(t))|β−1y(δ(t)) = 0,

for t ∈ [t0,∞)T where T is a time scale unbounded above, and x(t) = y(t)+p(t)y(τ(t)).

Throughout this paper we assume that:

(A1) α and β are positive constants with 0 < α < 1 < β;

(A2) r, p, q1, q2 ∈ Crd([t0,∞)T, R+) with 0 ≤ p(t) < 1 and
∫

∞
1/r(t)∆t = ∞;

(A3) τ, δ ∈ Crd([t0,∞)T, [t0,∞)T) with τ(t) ≤ t, δ(t) ≤ t for t ∈ [t0,∞)T, and

lim
t→∞

τ(t) = lim
t→∞

δ(t) = ∞.

For completeness, we recall the following concepts related to the notion of time

scales, see [1, 7, 15] for more details. A time scale T is an arbitrary nonempty closed

subset of the real numbers R and, since oscillation of solutions is our primary concern,

we make the blanket assumption that sup T = ∞. In this paper we assume that T
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has the topology which inherits from the standard topology on the real numbers R.

For t ∈ T we define the forward operator σ : T → T and the backward jump operator

ρ : T → T by

σ(t) := inf{s ∈ T : s > t}, ρ(t) := sup{s ∈ T, s < t},

respectively. In this definition we put inf ∅ := sup T (i.e., σ(t) = t if T has a maximum

t) and sup ∅ := inf T (i.e., ρ(t) = t if T has a minimum t), where ∅ denotes the empty

set. A point t ∈ T and t > inf T, is said to be left-dense if ρ(t) = t, right-dense

if t < sup T and σ(t) = t, left-scattered if ρ(t) < t and right-scattered if σ(t) > t.

A function g : T → R is said to be right-dense continuous (rd-continuous) provided

g is continuous at right-dense points and at left-dense points in T, left-hand limits

exist and are finite. The set of all such rd-continuous functions is denoted by Crd(T).

The set of functions f : T → R which are differentiable and whose derivative is rd-

continuous function is denoted by C1
rd(T, R). The graininess function µ for a time

scale T is defined by µ(t) := σ(t) − t, and for any function f : T → R the notation

fσ(t) denotes f(σ(t)).

Recall that a solution of (1.1) is a nontrivial real function y(t) such that y(t) +

p(t)y(τ(t)) ∈ C2
rd([ty,∞)T, R) for ty ≥ t0 and satisfies Eq. (1.1) for t > ty. Our

attention is restricted to those solutions of Eq. (1.1) which exist on some half-linear

[ty,∞) and satisfy sup{|y(t)| : t > t1} for any t1 > ty. A solution y(t) of Eq. (1.1)

is said to be oscillatory if it is neither eventually positive nor eventually negative,

otherwise it is nonoscillatory. Equation (1.1) is said to be oscillatory if all its solutions

are oscillatory.

Equation (1.1) in its general form involves different types of differential and dif-

ference equations depending on the choice of the time scale T. For example, when

T = R, we have

σ(t) = t, µ(t) = 0, f△(t) = f ′(t),

b
∫

a

f(t)△t =

b
∫

a

f(t)dt,

then Eq. (1.1) becomes the second order neutral delay differential equation

(1.2) (r(t)x′(t))′ + q1(t)|y(δ(t))|α−1y(δ(t)) + q2(t)|y(δ(t))|β−1y(δ(t)) = 0.

If T = N, we have

σ(t) = t + 1, µ(t) = 1, f△(t) = △f(t),

b
∫

a

f(t)△t =
b−1
∑

t=a

f(t),

then Eq. (1.1) becomes the neutral difference equation

(1.3) ∆(r(t)∆x(t)) + q1(t)|y(δ(t))|α−1y(δ(t)) + q2(t)|y(δ(t))|β−1y(δ(t)) = 0.
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DIFFERENTIAL INCLUSIONS 443

If T = hN := {hk : k ∈ N, h > 0}, we have σ(t) = t + h, µ(t) = h, and

x△(t) = △hx(t) =
x(t + h) − x(t)

h
,

b
∫

a

f(t)△t =

(b−a−h)/h
∑

k=0

f(a + kh)h,

then Eq. (1.1) becomes the neutral difference equation with constant step size

(1.4) ∆h(r(t)∆hx(t)) + q1(t)|y(δ(t))|α−1y(δ(t)) + q2(t)|y(δ(t))|β−1y(δ(t)) = 0.

If T = qN0 := {t : t = qn, n ∈ N0, q > 1}, we have σ(t) = qt, µ(t) = (q − 1)t, and

x△(t) = △qx(t) =
x(qt) − x(t)

(q − 1)t
,

b
∫

a

f(t)△t =
∑

t∈[a,b)

f(t)µ(t),

then Eq. (1.1) becomes the neutral q-difference equation with variable step size

(1.5) ∆q(r(t)∆qx(t)) + q1(t)|y(δ(t))|α−1y(δ(t)) + q2(t)|y(δ(t))|β−1y(δ(t)) = 0.

It is well known that the theory of time scales unifies continuous and discrete

analysis, and the theory of “dynamic equations” unifies the theories of differential

equations and difference equations, and it also extends these classical cases to cases

“in between”, e.g., to the so-called q-difference equations. Of course, many other

interesting time scales exist, and they give rise to plenty of application [3, 7, 8, 15].

The oscillation theory of difference and differential equations has been developed

extensively during the past years, we refer the reader to the monographs [1, 2, 4].

In recent years, there has been increasing interest in obtaining sufficient conditions

for the oscillation/nonoscillation of solution of the second order Emden-Fowler delay

dynamic equation

(1.6) x∆ ∆(t) + q(t)xγ(σ(t)) = 0

or

(1.7) (rx∆)∆(t) + q(t)xγ(σ(t)) = 0,

see, for example, [5, 6, 9, 10, 13, 14, 17] and the references therein. However, the

mixed type Emden-Fowler delay dynamic equation (1.1) has never been the subject

of systematic investigations.

In this paper, following the ideas in [11, 16, 18], we establish some oscillation

criteria for (1.1) on a time scale T. Our results as a special case when T = R improve

some well known oscillation criteria [18] for second order neutral mixed type Emden-

Fowler delay differential equation (1.2), and when T = N, T = hN and T = qN0 ,

i.e., for neutral delay difference equations, neutral delay difference equations with

constant step size, and second order q-neutral difference equations with variable step

size. The results obtained here are essentially new and can be applied to arbitrary

PRASANNA PC
Textbox
ISSN: 1748-0345 (Online)                                                                                                                                 www.tagajournal.com

PRASANNA PC
Textbox
© 2016 SWANSEA PRINTING TECHNOLOGY LTD                             62                                              TAGA JOURNAL VOL. 12



444 B. WANG AND Z. XU

time scales. Finally, some applications and examples are considered to illustrate the

main results.

2. MAIN RESULTS

Before we state and prove our main results, we present the following lemma which

is important in the proof of our main results. For simplicity of statement, we define

the following notation without further mentioning.

Θ(t) := (β − α)[1 − p(δ(t))]
[

(β − 1)1−β(1 − α)α−1qβ−1
1 (t)q1−α

2 (t)
]1/(β−α)

.

Lemma 2.1. Assume that

(2.1)

∫

∞

t0

δ(t)Θ(t)∆t = ∞

holds, and y is an eventually positive solution of Eq. (1.1). Then there exists a

T ∈ [t0,∞)T, sufficiently large, such that:

(1) x(t) > 0, x∆(t) > 0, x(t) > tx∆(t) for t ∈ [T,∞)T;

(2) x is strictly increasing and x(t)/t is strictly decreasing on [T,∞)T.

Proof. Let y be an eventually positive solution of Eq. (1.1). Then there exists t1 ∈

[t0,∞)T such that t1 > 0, and

y(t) > 0, y(τ(t)) > 0, y(δ(t)) > 0 for t ∈ [t1,∞)T,

which follows that x(t) > 0 for t ∈ [t1,∞)T, since p(t) > 0.

From (1.1), we have

(r(t)x∆(t))∆ = −q1(t)|y(δ(t))|α−1y(δ(t))− q2(t)|y(δ(t))|β−1y(δ(t)) < 0, t ∈ [t1,∞)T,

which implies that r(t)x∆(t) is an eventually decreasing function. We claim that

r(t)x∆(t) > 0 on [t1,∞)T. Assume not, then there is a t2 ∈ [t1,∞)T such that

r(t2)x
∆(t2) =: d1 < 0. Then

r(t)x∆(t) ≤ r(t2)x
∆(t2) = d1, t ∈ [t2,∞)T,

which follows that

x∆(t) ≤
d1

r(t)
, t ∈ [t2,∞)T.

Integrating the above from t2 to t, we get, by (A2),

x(t) = x(t2) +

∫ t

t2

x∆(s)∆s ≤ x(t2) + d1

∫ t

t2

1

r(s)
∆s → −∞ as t → ∞,

which implies x(t) is eventually negative. This is a contradiction. Hence, r(t)x∆(t) >

0 on [t1,∞)T and so x∆(t) > 0 on [t1,∞)T. Therefore, x(t) is strictly increasing on

[t1,∞)T. Let

χ(t) := x(t) − tx∆(t).
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We claim that there is a t2 ∈ [t1,∞)T such that χ(t) > 0 on [t2,∞)T. If not, then

χ(t) < 0 on [t2,∞)T. Hence,

(x(t)

t

)∆

=
tx∆(t) − x(t)

tσ(t)
= −

χ(t)

tσ(t)
> 0, t ∈ [t2,∞)T,

which implies that x(t)/t is strictly increasing on [t2,∞)T. Pick t3 ∈ [t2,∞)T such

that δ(t) ≥ δ(t3) on [t3,∞)T. Then

x(δ(t))/δ(t) ≥ x(δ(t3))/δ(t3) =: d2 > 0,

so that x(δ(t)) ≥ d2δ(t) on [t3,∞)T. Since x(t) > 0 and x∆(t) > 0 for t ∈ [t1,∞)T,

y(t) = x(t) − p(t)y(τ(t))

= x(t) − p(t)[x(τ(t)) − p(τ(t))y(τ(τ(t)))]

≥ x(t) − p(t)x(τ(t)) ≥ [1 − p(t)]x(t),

consequently, y(δ(t)) ≥ [1 − p(δ(t))]x(δ(t)). Therefore, (1.1) can be rewritten as

(2.2) (r(t)x∆(t))∆ + q1(t)[1 − p(δ(t))]αxα(δ(t)) + q2(t)[1 − p(δ(t))]βxβ(δ(t)) ≤ 0.

By the arithmetic and geometric inequality [12, Theorem 9], we have

q1(t)[1 − p(δ(t))]αxα(δ(t)) + q2(t)[1 − p(δ(t))]βxβ(δ(t))

= x(δ(t)){q1(t)[1 − p(δ(t))]αxα−1(δ(t)) + q2(t)[1 − p(δ(t))]βxβ−1(δ(t))}

≥ Θ(t)x(δ(t)).

Combining the above and (2.2), we get

(2.3) (r(t)x∆(t))∆ + Θ(t)x(δ(t)) ≤ 0.

By integrating both sides of (2.3) from t3 to t, we have

r(t3)x
∆(t3) ≥ r(t)x∆(t) +

∫ t

t3

Θ(s)x(δ(s))∆s ≥ d2

∫ t

t3

δ(s)Θ(s)∆s,

since r(t)x∆(t) > 0. This contradicts (2.1). Hence, there is a t2 ∈ [t1,∞)T such that

χ(t) > 0 on [t2,∞)T, which follows that x(t) > tx∆(t) on [t2,∞)T. Consequently,
(

x(t)

t

)∆

=
x∆(t)t − x(t)

tσ(t)
= −

χ(t)

tσ(t)
< 0, t ∈ [t2,∞)T,

so, we have that x(t)/t is strictly decreasing on [t2,∞)T.

Now, we employ the generalized Riccati transformation and averaging technique

to establish oscillation criteria for Eq. (1.1). In the sequel, we use a class of functions

introduced by Philos [16]. Let D = {(t, s) ∈ T
2 : t0 ≤ s ≤ σ(t)}. We say that a

function H ∈ C1
rd(D, [0,∞)) belongs to the class ℑ, defined by H ∈ ℑ, if it satisfies

the following two conditions:

(H1) H(t, s) ≥ 0 for (t, s) ∈ D, and H(σ(t), s) = 0 if and only if s = t;
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(H2) H∆
2 (t, s) ≤ 0 for t0 ≤ s < σ(t), and there exists h ∈ Crd(D, R) such that

H∆
2 (σ(t), s) = −h(t, s)

√

H(σ(t), σ(s)),

where H∆
2 (t, s) is delta derivative with respect to s.

Theorem 2.2. Let (2.1) hold. Furthermore, assume that there exist functions H ∈ ℑ,

v ∈ C1
rd([t0,∞)T, R+) and rη ∈ C1

rd([t0,∞)T, R) such that

(2.4) lim sup
t→∞

1

H(σ(t), t0)

∫ t

t0

H(σ(t), σ(s))
[

φ(s) −
1

4
g(s)ϕ2(t, s)

]

∆s = ∞,

where

φ(s) :=
[

δ(s)Θ(s) + sr(s)η2(s) − σ(s)[r(s)η(s)]∆
]vσ(s)

σ(s)
,

g(s) :=
r(s)σ(s)

svσ(s)
v2(s), ϕ(t, s) :=

v∆(s)

v(s)
+

2sη(s)vσ(s)

σ(s)v(s)
−

h(t, s)
√

H(σ(t), σ(s))
.

Then Eq. (1.1) is oscillatory on [t0,∞)T.

Proof. Suppose to the contrary that y(t) is a nonoscillatory solution of Eq. (1.1).

Without loss of generality, we may assume that y(t) is an eventually positive solution

of (1.1) with y(δ(t)) > 0 and y(τ(t)) > 0 for all t ≥ t1 sufficiently large, since the

proof in the other case is similar. In view of Lemma 2.1, there is some t2 ≥ t1, such

that

x∆(t) > 0, (r(t)x∆(t))∆ < 0 for t ≥ t2.

Define the function w(t) by the generalized Riccati transformation

w(t) := v(t)

[

r(t)x∆(t)

x(t)
+ r(t)η(t)

]

, t ≥ t2.

Hence,

w∆(t) =
v∆(t)

v(t)
w(t) + vσ(t)

(r(t)x∆(t))∆

xσ(t)
− vσ(t)

r(t)x∆(t)x∆(t)

x(t)xσ(t)
+ vσ(t)[r(t)η(t)]∆

≤
v∆(t)

v(t)
w(t) − vσ(t)Θ(t)

x(δ(t))

xσ(t)
− vσ(t)

r(t)x(t)

xσ(t)

(x∆(t)

x(t)

)2

+ vσ(t)[r(t)η(t)]∆.(2.5)

From the definition of w(t), we get

(2.6)
x∆(t)

x(t)
=

w(t)

v(t)r(t)
− η(t).

Also from Lemma 2.1, since x(t)/t is strictly decreasing, we have

(2.7)
x(δ(t))

xσ(t)
≥

δ(t)

σ(t)
,

x(t)

xσ(t)
≥

t

σ(t)
.
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Substituting (2.6) and (2.7) into (2.5), we obtain

w∆(t) ≤
v∆(t)

v(t)
w(t) − vσ(t)Θ(t)

δ(t)

σ(t)

−vσ(t)
tr(t)

σ(t)

[ w(t)

v(t)r(t)
− η(t)

]2

+ vσ(t)(r(t)η(t))∆

= −φ(t) +
[v∆(t)

v(t)
+

2tη(t)vσ(t)

σ(t)v(t)

]

w(t) −
1

g(t)
w2(t).(2.8)

Evaluating both sides of (2.8) at s, multiplying by H(σ(t), σ(s)), integrating from t2

to t, using integration by parts formula, and rearranging the terms, we get
∫ t

t2

H(σ(t), σ(s))φ(s)∆s ≤ −

∫ t

t2

H(σ(t), σ(s))w∆(s)∆s

+

∫ t

t2

H(σ(t), σ(s))
[v∆(s)

v(s)
+

2sη(s)vσ(s)

σ(s)v(s)

]

w(s)∆s −

∫ t

t2

1

g(s)
H(σ(t), σ(s))w2(s)∆s

= H(σ(t), t2)w(t2) +

∫ t

t2

H(σ(t), σ(s))
[

ϕ(t, s)w(s) −
1

g(s)
w2(s)

]

∆s,

which implies that, after completing the square, that
∫ t

t2

H(σ(t), σ(s))φ(s)∆s ≤ H(σ(t), t2)w(t2) +
1

4

∫ t

t2

H(σ(t), σ(s))g(s)ϕ2(t, s)∆s,

consequently,
∫ t

t2

H(σ(t), σ(s))
[

φ(s) −
1

4
g(s)ϕ2(t, s)

]

∆s ≤ H(σ(t), t2)w(t2) ≤ H(σ(t), t2)|w(t2)|.

Hence, for all t ≥ t0,
∫ t

t0

H(σ(t), σ(s))
[

φ(s) −
1

4
g(s)ϕ2(t, s)

]

∆s

=
(

∫ t2

t0

+

∫ t

t2

)

H(σ(t), σ(s))
[

φ(s) −
1

4
g(s)ϕ2(t, s)

]

∆s

≤ H(σ(t), t0)
[

∫ t2

t0

|φ(s)|∆s + |w(t2)|
]

.

Divide the above inequality by H(σ(t), t0) and take lim sup in it as t → ∞, then

condition (2.4) gives a desired contradiction. The proof is complete.

As an immediate conclusion of Theorem 2.2, we obtain

Corollary 2.3. In Theorem 2.2, if (2.4) is replaced by

lim sup
t→∞

1

H(σ(t), t0)

∫ t

t0

H(σ(t), σ(s))φ(s)∆s = ∞,(2.9)

and

lim sup
t→∞

1

H(σ(t), t0)

∫ t

t0

H(σ(t), σ(s))g(s)ϕ2(t, s)∆s < ∞,(2.10)
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then Eq. (1.1) is oscillatory on [t0,∞)T.

From Theorem 2.2, we can establish different sufficient conditions for the oscilla-

tion of Eq. (1.1) by using different choices of v(t) and η(t). For instance, if we consider

v(t) = t, η(t) = 1/t, define H(t, s) for (t, s) ∈ D by H(σ(t), t) = 0, and H(t, s) = 1

otherwise, using Theorem 2.2, we get the following corollary.

Corollary 2.4. Let (2.1) hold, and assume that

(2.11) lim sup
t→∞

∫ t

t0

[

δ(s)Θ(s) − σ(s)
(r(s)

s

)∆

−
5r(s)

4s

]

∆s = ∞.

Then Eq. (1.1) is oscillatory on [t0,∞)T.

If in Theorem 2.2, we choose η(t) and v(t) such that

(2.12) η(t) = −
σ(t)v∆(t)

2tvσ(t)
,

then we have

Corollary 2.5. Let (2.1) hold, and assume that there exist functions H ∈ ℑ, v ∈

C1
rd([t0,∞), R+) such that (2.12) holds and

(2.13) lim sup
t→∞

1

H(σ(t), t0)

∫ t

t0

[

H(σ(t), σ(s))φ(s) −
σ(s)r(s)v2(s)

4svσ(s)
h2(t, s)

]

∆s = ∞,

where φ is as in Theorem 2.2. Then Eq. (1.1) is oscillatory on [t0,∞)T.

If we choose v(t) and η(t) such that (2.12) holds, define H(t, s) for (t, s) ∈ D by

H(σ(t), t) = 0, and H(t, s) = 1 otherwise, from Corollary 2.5, we have

Corollary 2.6. Let (2.1) hold, and assume that there exists a function

v ∈ Crd([t0,∞)T, R+) such that (2.12) holds and

(2.14) lim sup
t→∞

∫ t

t0

φ(s)∆s = ∞,

where φ is as in Theorem 2.2. Then Eq. (1.1) is oscillatory on [t0,∞)T.

From Corollary 2.6, we can also establish other sufficient conditions for the os-

cillation of Eq. (1.1) by using different choices of v(t). For example, if v(t) = t, then

η(t) = −1/(2t), and if v(t) = t2, then η(t) = −(t + σ(t))/(2tσ(t)), then by Corollary

2.6, we have the following oscillation results, respectively.

Corollary 2.7. Let (2.1) hold, and assume that

(2.15) lim sup
t→∞

∫ t

t0

[

δ(s)Θ(s) +
r(s)

4s
+

σ(s)

2

(r(s)

s

)∆]

∆s = ∞.

Then Eq. (1.1) is oscillatory on [t0,∞)T.
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Corollary 2.8. Let (2.1) hold, and assume that

(2.16) lim sup
t→∞

∫ t

t0

σ2(s)
[ δ(s)

σ(s)
Θ(s) +

r(s)(s + σ(s))2

4sσ3(s)
+

(r(s)(s + σ(s))

2sσ(s)

)∆]

∆s = ∞.

Then Eq. (1.1) is oscillatory on [t0,∞)T.

3. APPLICATIONS

In this section, we apply Theorem 2.2 to different types of time scales and estab-

lish some oscillation criteria for Eqs.(1.2)–(1.5). For applications of the main results,

we will give five interesting examples which are new and not be studied by any authors

mentioned earlier.

We start with the case when T = [t0,∞). By using Theorem 2.2, we have the

following oscillation result for Eq. (1.2).

Theorem 3.1. Assume that
∫

∞

t0

dt

r(t)
= ∞ and

∫

∞

t0

δ(t)Θ(t)dt = ∞.(3.1)

Furthermore, assume that there exist functions H ∈ ℑ, v ∈ C1([t0,∞), R+) and

rη ∈ C1([t0,∞), R) such that

(3.2) lim sup
t→∞

1

H(t, t0)

∫ t

t0

H(t, s)
[

φ(s) −
1

4
v(s)r(s)ϕ2(t, s)

]

ds = ∞,

where

φ(s) : = v(s)
[1

s
δ(s)Θ(s) + r(s)η2(s) − [r(s)η(s)]′

]

,

ϕ(t, s) : = 2η(s) +
v′(s)

v(s)
−

h(t, s)
√

H(t, s)
.

Then Eq. (1.2) is oscillatory on [t0,∞).

Remark 3.1. For Eq. (1.2), Theorem 3.1 improves Theorem 2.1 in Xu [18].

Define H(t, s) by H(t, t) = 0 and H(t, s) = 1 for t0 ≤ s < t, by Theorem 3.1, we

get

Corollary 3.2. Let (3.1) hold, and assume that there exists a function

v ∈ C1([t0,∞)T, R+) such that (2.12) holds and

(3.3) lim sup
t→∞

∫ t

t0

v(s)
[1

s
δ(s)Θ(s) + r(s)

( v′(s)

2v(s)

)2

+
(r(s)v′(s)

2v(s)

)′]

ds = ∞.

Then Eq. (1.2) is oscillatory on [t0,∞).

We now apply Theorem 2.2 to the time scale T = [t0,∞)N, t0 ∈ N, and establish

some oscillation criteria for the delay difference equation Eq. (1.3).
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Theorem 3.3. Assume that

∞
∑

t=t0

1

r(t)
= ∞ and

∞
∑

t=t0

δ(t)Θ(t) = ∞.(3.4)

Furthermore, assume that there exist H ∈ ℑ, a sequence η(t) and a positive sequence

v(t) such that

(3.5) lim sup
t→∞

1

H(t + 1, t0)

t−1
∑

s=t0

H(t + 1, s + 1)
[

φ(s) −
(s + 1)r(s)

4sv(s + 1)
v2(s)ϕ2(t, s)

]

= ∞,

where

φ(s) : =
v(s + 1)

s + 1

[

δ(s)Θ(s) + sr(s)η2(s) − (s + 1)∆(r(s)η(s))
]

,

ϕ(t, s) : =
∆v(s)

v(s)
+

2sη(s)v(s + 1)

(s + 1)v(s)
−

h(t, s)
√

H(t + 1, s + 1)
.

Then Eq. (1.3) is oscillatory on [t0,∞)N.

From Theorem 3.3, we can establish different sufficient conditions for the oscil-

lation of (1.3) by using different choices of H , v and η. For instance, let v(t) = t,

η(t) = 1/t, define H(t, s) by H(t + 1, t) = 0, and H(t, s) = 1 otherwise, then, by

Theorem 3.3, we get

Corollary 3.4. Assume that (3.4) holds, and

(3.6) lim sup
t→∞

t−1
∑

s=t0

[

Θ(s)δ(s) − (s + 1)∆
(r(s)

s

)

−
5r(s)

4s

]

= ∞.

Then Eq. (1.3) is oscillatory on [t0,∞)N.

When T = [n0h,∞)hN for h > 0 and n0 ∈ N, from Theorem 2.2, we have

Theorem 3.5. Assume that

∞
∑

k=n0

1

r(kh)
= ∞ and

∞
∑

k=n0

δ(kh)Θ(kh) = ∞.(3.7)

Furthermore, assume that there exist H ∈ ℑ, a sequence η(t) and a positive sequence

v(t) such that

lim sup
n→∞

1

H(nh + h, n0h)

n−1
∑

k=n0

H(nh + h, kh + h)

×
[

φ(kh) −
(k + 1)r(kh)

4kv(kh + h)
v2(kh)ϕ2(nh, kh)

]

= ∞,(3.8)
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where

φ(kh) :=
v(kh + h)

kh + h
[δ(kh)Θ(kh) + khr(kh)η2(kh) − (kh + h)∆h(r(kh)η(kh))],

ϕ(nh, kh) :=
∆hv(kh)

v(kh)
+

2kη(kh)v(kh + h)

(k + 1)v(kh)
−

h(nh, kh)
√

H(nh + h, kh + h)
.

Then Eq. (1.4) is oscillatory on [n0h,∞)hN.

Define H(t, s) by H(t + h, t) = 0, and H(t, s) = 1 otherwise, let v(t) = t and

η(t) = −1/(2t), then, by Theorem 3.5, we have:

Corollary 3.6. Assume that (3.7) holds, and

lim sup
n→∞

n−1
∑

k=n0

[

δ(kh)Θ(kh) +
r(kh)

4kh
+

1

2
h(k + 1)∆h

(r(kh)

kh

)]

= ∞.(3.9)

Then Eq. (1.4) is oscillatory on [n0h,∞)hN.

Next, by applying Theorem 2.2 to Eq. (1.5), we have

Theorem 3.7. Assume that
∞

∑

k=n0

qk

r(qk)
= ∞ and

∞
∑

k=n0

qkΘ(qk)δ(qk) = ∞.(3.10)

Furthermore, assume that there exist H ∈ ℑ, a sequence η(t) and a positive sequence

v(t) such that

(3.11)

lim sup
n→∞

1

H(qn+1, qn0)

n−1
∑

k=n0

H(qn+1, qk+1)
[

qkφ(qk) −
qk+1r(qk)

4v(qk+1)
v2(qk)ϕ2(qn, qk)

]

= ∞,

where

φ(s) : =
v(qs)

qs

[

δ(s)Θ(s) + sr(s)η2(s) − qs∆q(r(s)η(s))
]

,

ϕ(t, s) : =
∆qv(s)

v(s)
+

2η(s)v(qs)

qv(s)
−

h(t, s)
√

H(qt, qs)
.

Then Eq. (1.5) is oscillatory on [qn0 ,∞)qN0 .

If in Theorem 3.7 we choose v(t) = t and η(t) = 1/t, define H(t, s) by H(qt, t) = 0,

and H(t, s) = 1 otherwise, we have

Corollary 3.8. Assume that (3.10) holds, and

(3.12) lim sup
n→∞

n−1
∑

k=n0

[

qkδ(qk)Θ(qk) − q2k+1∆q

(r(qk)

qk

)

−
5

4
r(qk)

]

= ∞.

Then Eq. (1.5) is oscillatory on [qn0 ,∞)qN0 .
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Finally, we give some examples to show the significance of our main results.

Example 3.1. Consider the second order dynamic equation

(3.13)
( 1

t2
x∆(t)

)∆

+ q1(t)y
1

5 (t − 1) + q2(t)y
9

5 (t − 1) = 0, t ∈ [2,∞)T,

where p(t) = 1 − 1/t, q1, q2 ∈ Crd([2,∞)T, R+) with q1(t) = q2(t) ≥ σ2(t). Let

v(t) = 1, η(t) = 0, which follows that φ(t) ≥ 2σ(t).

In this case (2.14) reads

lim sup
t→∞

∫ t

2

φ(s)∆s ≥ lim sup
t→∞

∫ t

2

2σ(s)∆s ≥ 2 lim sup
t→∞

∫ t

2

s∆s = ∞.

Hence, by Corollary 2.6, Eq. (3.13) is oscillatory on [2,∞)T. In particular,

(1) if T = R and q1(t) = q2(t) ≥ t2, then Eq. (3.13) is oscillatory;

(2) if T = N and q1(t) = q2(t) ≥ (t + 1)2, then Eq. (3.13) is oscillatory;

(3) if T = hN for h > 0 and q1(t) = q2(t) ≥ (t + h)2, then Eq. (3.13) is oscillatory;

(4) if T = qN0 for q > 1 and q1(t) = q2(t) ≥ q2t2, then Eq. (3.13) is oscillatory.

Example 3.2. Consider the second-order neutral delay differential equation

(3.14)
( 1

t5
x′(t)

)′

+ q1(t)|y(t− 1)|α−1y(t− 1) + q2(t)|y(t − 1)|β−1y(t− 1) = 0,

where t ∈ [2,∞), p(t) = 1 − 1/t, 0 < α < 1 < β with α + β = 2, and q1, q2 ∈

C([2,∞), R+) with q1(t) = q2(t) ≥ λ/t3, λ > 0. Let

v(t) = t3, η(t) = −3/(2t), H(t, s) = (t − s)2.

A direct computation yields that

φ(t) ≥
2λ

t
−

27

4t4
, ϕ(t, s) = −

2

t − s
.

Thus, for all λ > 0,

lim sup
t→∞

1

H(t, 2)

∫ t

2

H(t, s)
[

φ(s) −
1

4
v(s)r(s)ϕ2(t, s)

]

ds

≥ lim sup
t→∞

1

(t − 2)2

∫ t

2

(t − s)2
[2λ

s
−

27

4s4
−

1

s2(t − s)2

]

ds

= 2λ ln t + constant = ∞,

i.e., (3.2) holds. Hence, by Theorem 3.1, Eq. (3.14) is oscillatory.

Example 3.3. Consider the following equation

(3.15) ∆
( 1

t + 1
∆x(t)

)

+
t2

(t − 1)2
y

1

3 (t − 1) + (t + 1)2y
5

3 (t − 1) = 0, t ∈ [2,∞)N,

where p(t) = p0 with 0 ≤ p0 < 1. Put v(t) = 1, η(t) = 1 + 1/t, define H(t, s) by

H(t + 1, t) = 0, and H(t, s) = 1 otherwise. It is easy to compute that

φ(t) = 2(1 − p0)t +
1

t
+

1

t(t + 1)
, ϕ(t, s) = 2.
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Thus, for all t > 2,

lim sup
t→∞

1

H(t + 1, 2)

t−1
∑

s=2

H(t + 1, s + 1)
[

φ(s) −
(s + 1)r(s)

4sv(s + 1)
v2(s)ϕ2(t, s)

]

= lim sup
t→∞

t−1
∑

s=2

[

2(1 − p0)s +
1

s(s + 1)

]

= lim sup
t→∞

[

(1 − p0)(t + 1)(t − 2) +
1

2
−

1

t

]

= ∞,

which follows that (3.5) holds. Therefore, by Theorem 3.3, Eq. (3.15) is oscillatory

on [2,∞)N.

Example 3.4. Consider the following equation

(3.16) ∆h(∆hx(t)) +
(t + 1)2

8(t − 1)
y

1

2n+1 (t − 1) +
(t + 1)2

8(t − 1)
y

4n+1

2n+1 (t − 1) = 0,

where t ∈ [3,∞)hN for h = 3, p(t) = t/(1 + t), n is a positive integer. Take v(t) = t

and η(t) = −1/(2t), then

Θ(t) =
(t + 1)2

4t(t − 1)
.

Thus, for all n > 1,

lim sup
n→∞

n−1
∑

k=1

[

δ(kh)Θ(kh) +
r(kh)

4kh
+

kh + h

2
∆h

(r(kh)

kh

)]

=
1

3
lim sup

n→∞

n−1
∑

k=1

[(3k + 1)2

4k
−

1

4k

]

= lim sup
n→∞

(3

8
n2 +

1

8
n −

1

2

)

= ∞.

Hence, (3.9) holds, consequently, by Corollary 3.6, Eq. (3.16) is oscillatory on [3,∞)hN.

Example 3.5. Consider the 2-difference equation

(3.17) ∆q

(1

t
∆qx(t)

)

+ q1(t)y
1

3 (t − 1) + q2(t)y
5

3 (t − 1) = 0, t ∈ T,

where T = [2,∞)2N0 , p(t) = 1 − 1/t, and q1, q2 ∈ Crd(T, R+) with q1(t) = q2(t) ≥

1 − 1/(8t2). Define v(t) = t and η(t) = 1/t, we get

Θ(t) ≥
2

t − 1

(

1 −
1

8t2

)

.
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Thus, for all n > 1,

lim sup
n→∞

n−1
∑

k=1

[

qkδ(qk)Θ(qk) − q2k+1∆q

(r(qk)

qk

)

−
5r(qk)

4

]

≥ lim sup
n→∞

n−1
∑

k=1

[

2k+1
(

1 −
1

22k+3

)

+
3

2k+1
−

5

2k+2

]

= lim sup
n→∞

n−1
∑

k=1

2k+1 = ∞,

which follows that (3.12) holds. Hence, by Corollary 3.8, Eq. (3.17) is oscillatory on

[2,∞)2N0 .
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