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ABSTRACT. A very general conceptual algorithm for finding a solution process of a first order

nonlinear differential equation is presented. The scope of this method is exhibited by showing the

existing methods of solving nonlinear differential equations as special cases. Moreover, this approach

extends for solving a larger class of nonlinear differential equations.

1. INTRODUCTION

Historically, it is well-known [2–8] that the energy/Lyapunov function method has

played a very significant role in the qualitative and quantitative analysis of nonlinear

and nonstationary systems of dynamic systems biological, engineering, physical and

social sciences. In this work, we extend its usage for finding close form solutions

(explicit or implicit form).

In this work, we present a very general conceptual algorithm for finding a so-

lution process of a first order nonlinear differential equation. The method seeks an

energy function associated with a given dynamic process. By knowing the existence

of a solution process, we assume that there is an energy function associated with a

given dynamic system. The basic ideas are: (1) to seek an unknown energy function,

(2) to associate a simpler differential equation with an unknown energy function and

the original nonlinear differential equation, (3) to determine an energy function in

the context of a simpler differential equation and the original nonlinear differential

equation, and (4) to find a representation of a solution of the original differential

equation in the context of the energy function and the solution process of a simpler

differential equation. We note that during the reduction process (to a simpler dif-

ferential equation), the energy and rate functions of a simpler differential equation

are determined. A solution of an original nonlinear differential equation is recasted
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in the context of the energy function and the solution of easily solvable differential

equations like: (a) the directly integrable differential equation, (b) a first order linear

differential equation, and (c) nonlinear solvable differential equations.

Furthermore, the scope of this method is demonstrated by solving the variable

separable differential equations, homogeneous differential equations, the Bernoulli

type differential equations and essentially time invariant nonlinear differential equa-

tions [1,2] in a systematic and unified way. Thus the energy function method unifies

the existing methods of solving nonlinear differential equations.

The procedure uses an Energy/Lyapunov type function, in order to create a new

and simpler (reduced) differential equation, whose solution will in turn produce an

implicit primitive for the original differential equation.

2. GENERAL PROBLEM

Let us consider the following first order nonlinear differential equation:

(2.1) dx = f(t, x) dt,

where f is a continuous function defined on J × R into R, J = [α, β]. We further

assume that the initial value problem corresponding to (2.1) has a unique solution.

The goal is to discuss a general procedure to find a representation of a general solution

of (2.1).

3. GENERAL ALGORITHM

We impose conditions on an (unknown) energy function V (t, x); we then conduct

a search for a suitable V (t, x) with the goal of eventually producing a reduced (solv-

able) differential equation, which in turn shall provide a closed form implicit/explicit

solution or primitive for the nonlinear equation (2.1).

Step 1. We assume the existence of V (t, x) satisfying:

a) V (t, x) is continuous on J × R.

b) V (t, x) is monotonic in x, for each t ∈ J .

c) V is continuously differentiable with respect to t and x.

d) For each t ∈ J , V has an “inverse” E(t, x) such that

V (t, E(t, x)) = x = E(t, V (t, x)).

Step 2. Define differential operator L associated with (2.1):

L =
∂

∂t
+ f(t, x)

∂

∂x
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ENERGY FUNCTION METHOD 337

and apply L to V thus:

(3.1) dV (t, x(t)) = LV (t, x(t)) dt

or simply dV = Vtdt + fVxdt.

Step 3. Define composite m(t) = V (t, x(t)). Study the structure of (3.1) and

select a useful form or class of rate function F (t, m) for which the following reduced

differential equation can be readily solved:

(3.2) dm = F (t, m) dt.

Step 4. Combine (3.1) and (3.2) to produce

(3.3) F (t, V (t, x)) =
∂

∂t
V (t, x) + f(t, x)

∂

∂x
V (t, x).

Next analyze and search for such a V (t, x) whose associated composite m(t) solves

the reduced (3.2).

Step 5. Recover the solution x(t) of (2.1) from the (usually implicit) equation:

(3.4) V (t, x) = m(t) + C.

Let us approach the analysis of this method by considering various classes of

the resulting reduced form F (t, m). A starting place is the simplest class of explicit

integrable functions. We begin by considering the class:

4. INTEGRABLE DIFFERENTIAL EQUATIONS

In this section we demonstrate the general procedure described in Section 2 for

the class of differential equations (2.1) which can be reduced to an explicitly integrable

rate function F (t, m) = p(t) in (3.2). The simpler p(t) which results from the method

will be continuous and therefore integrable.

(a) This resulting p(t), or F , shall have been required to satisfy (3.3).

(b) From (3.1), the original ODE (2.1) shall be reduced to the form

(4.1) dm = p(t) dt

which is reduced integrable differential equation.
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Procedure. Perform the general steps 1 and 2 in Section 3.

Now, using the chosen class F (t, m) = p(t), (3.3) becomes

(4.2) p(t) =
∂

∂t
V (t, x) + f(t, x)

∂

∂x
V (t, x).

Step 4. If x(t) is to be a solution of (2.1), then (4.1) imposes condition (3.1) on

energy V (t, x) which in turn produces

(4.3) dV = Vtdt + fVxdt = p(t) dt.

Step 5.

(4.4) V (t, x(t)) =

∫

dV (t, x(t)) =

∫

p(t) dt + C

where C is a constant of integration.

Observation 4.1. Differential equation (2.1) is the most general type of explicit

nonlinear ODE. Let us consider the application of the method to the subclass of the

form

(4.5) f(t, x) = −
M(t, x)

N(t, x)
; dx = f(t, x) dt

and choice of reduced ODE rate F (t, m) = p(t) in (3.2).

Note (4.5) also has form N dx + M dt = 0. M , N , and p are continuous.

Here (4.2) becomes

(4.6) p(t) =
∂

∂t
V (t, x) −

M(t, x)

N(t, x)

∂

∂x
V (t, x).

We proceed to search for a useful combination pair p(t) and V (t, x).

For form (4.5) we approach the search by considering a choice of energy function

of the form

(4.7) V (t, x) =

∫

u(t, x) N(t, x) dx

where now the nonzero factor u(t, x) becomes our search goal.

For the sake of clarity, and using suppressed notation where feasible, we note

Vx = uN ; condition (4.6) now becomes

(4.8) p(t) = Vt + fVx = Vt −
M

N
Vx = Vt + fVx = Vt − uM.

This implies

(4.9)
∂

∂x

(

∂

∂t

(
∫

u(t, x)N(t, x) dx

)

− u(t, x)M(t, x)

)

= 0.

Thus the given functions M(t, x), N(t, x), and the unknown target u(t, x) must

together satisfy (4.9) in order to reduce the ODE (4.5) to the integrable class (4.1).
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ENERGY FUNCTION METHOD 339

Observation 4.2. Manipulating (4.8) with (4.7) and (4.5) as follows, we find

∂

∂t

∫

u N dx − u M =

∫

∂

∂t
(u N) dx −

∫

∂

∂x
(u M) dx + q(t),

where q results from partial antiderivative. Thus the condition (3.2) can be guaranteed

by the vanishing of
∫

∂

∂t
(u N) dx −

∫

∂

∂x
(u M) dx =

∫
[

∂

∂t
(u N) −

∂

∂x
(u M)

]

dx

or the vanishing of the integrand

∂

∂t
(u N) −

∂

∂x
(u M)

Thus, in this case, the factor u(t, x) plays the role of an integrating factor [1, 2],

and our method reduces to the Generalized Method of Integrating Factor. Further if

u(t, x) ≡ u(t) or if u(t, x) ≡ u(x), then the Energy Function Method is equivalent to

the usual Method of Integrating Factor.

Observation 4.3. In the further case where u(t, x) ≡ 1, we see the Energy Function

Method reduces to the usual Method of Exact Differential Equation [1, 2].

In the following, we present examples to illustrate this approach.

Example 4.1. dx = −
(

2 sec(tx) + x
t

)

dt.

Note

f(t, x) = −
2t + x cos(tx)

t cos(tx)

in the

−
M(t, x)

N(t, x)

form.

Assuming there exists a V (t, x), we formally write

dV = Vtdt + Vxdx

and make a choice for dm = F (t, m) dt. Suppose we choose reduced form dm = p(t) dt.

We are now seeking a V = V (t, x) such that

(4.10) Vt + fVx = Vt −
M

N
Vx = p(t).

One approach is to transfer the search for V (t, x) to a search for some u(t, x)

such that V =
∫

uN dx or formally

V (t, x) =

∫ x

a

u(t, y) N(t, y) dy.

Also note

(4.11) Vx = uN = u(t, x) t cos(tx).
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Denoting
∫

N dx by Ñ ; here Ñ = sin(tx) and
∂Ñ

∂x
= N . We compute by parts

V =

∫

uN dx = uÑ −

∫

uÑ dx,

and

(4.12) Vt = utÑ + uÑt −
∂

∂t

∫

uÑ dx.

Thus (3.1) becomes

Vt −
M

N
Vx = p(t),

or

ut sin(tx) + ux cos(tx) −
∂

∂t

∫

uÑ dx − uM = p(t).

By M = 2t + x cos(tx) we seek u(t, x) to satisfy:

ut sin(tx) + ux cos(tx) −
∂

∂t

∫

uÑ dx − ux cos tx − 2ut = p(t),

or simply

ut sin(tx) − 2ut −
∂

∂t

∫

uÑ dx = p(t).

Setting u ≡ 1 will reduce the solution to p(t) = −2t.

Step 6. Reduced ODE m(t) = −2t dt implies m(t) = −t2 + C.

The key step now is to recall m(t) is defined as the composite V (t, x(t)). And

Energy V =
∫

uN dx =
∫

N dx = Ñ = sin(tx).

Thus we have the implicit primitive −t2 + C = sin(tx) solving Example 4.1.

Remark 4.1. This example is actually an exact form, but we shall see further cases.

Example 4.2.

x′ = −
2t tan x + 2xt2 + x − 2t

t + sec2 x

Here

f(t, x) = −
M(t, x)

N(t, x)

is not exact.

Again set

V =

∫

uN dx = uÑ −

∫

uxÑ dx

where

Ñ =

∫

N dx = tx + tanx.

Thus,

Vt = utÑ + ux −
∂

∂t

∫

uxÑ dx.

Also note again Vx = uN .
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ENERGY FUNCTION METHOD 341

We are attempting to reach the reduced form dm = p(t) dt where m(t) =

V (t, x(t)). Thus we seek

V =

∫

uN dx

to satisfy

m′ = Vt + fVx = p(t).

That is

(4.13) ut(tx + tan x) + ux −
∂

∂t

∫

uxÑ dx − u
[

2t tanx + 2xt2 + x − 2t
]

= p(t).

Here u ≡ constant does not work. Try u(t, x) = u(t); ux = 0. Condition (4.13)

becomes

(u′ − 2tu) (tx + tan x) + 2tu = p(t).

Setting u′ − 2tu = 0 produces 2tu = p(t). Note u = et2 suffices. We have m′ = p(t) =

2tet2 which gives m(t) = et2 + C. But m(t) = V (t, x(t)) and

V =

∫

uN dx = et2Ñ = et2 [tx + tanx].

Thus implicitly we have et2 + C = et2 [tx + tan x] or primitive of Example 4.2 as

(4.14) tx + tanx − 1 = Ce−t2 .

Remark 4.2. We remark that this example, while not exact, can be made exact

by the introduction of integrating factor et2 . Now other methods would indeed have

developed the same integrating factor. However it is interesting to note how our

accommodating factor u(t) produced the energy function

V (t, x) =

∫

u(t) N(t, x) dx,

which produced u′ − 2tu = 0, which generated the integrating factor [1, 2]. Thus

this general Energy Function Method does incorporate exactness and integrating

factors [1,2] and, as we shall see, other classes of equations in the subsequent sections.

5. LINEAR NONHOMOGENEOUS EQUATIONS

We now consider the Energy Function Method approach to the problems of re-

ducing nonlinear equations (2.1) into the class of linear nonhomogeneous differential

equations of the form

(5.1) dm = F (t, m) dt = [µ(t) m + p(t)] dt

here µ(t) and p(t) are continuous real-valued rate coefficients.
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Procedure. Preliminary Steps 1 and 2 are parallel.

Having chosen the class of forms F (t, V (t, x)) = µ(t) V (t, x) + p(t), Step 3 is to

compute the differential of m(t) = V (t, x(t)) along x(t). Step 4 becomes

µ(t) V (t, x) + p(t) =
∂

∂t
V (t, x) + f(t, x)

∂

∂x
V (t, x),

which Energy Function V (t, x) must satisfy in order to reduce (3.1) to (5.1). Since

the solution of (5.1) is

m(t) = C exp

[
∫ t

µ(r) dr +

∫ t

exp

[
∫ t

s

µ(r) dr

]]

p(s) ds

we have Step 5:

V (t, x(t)) = C exp

[
∫ t

µ(r) dr +

∫ t

exp

[
∫ t

s

µ(r) dr

]]

p(s) ds

forms the implicit solution of (2.1).

Observation 5.1. Let us consider the application of the Method to the subclass of

the form

f(t, x) = −
M(t, x) + R(t, x)

N(t, x)
;

(5.2) dx = f(t, x) dt

and a choice of reduced ODE rate

F (t, m) = µ(t) m + p(t)

in (5.1).

Note (5.2) also has the form N dx + (M + R) dt = 0. M , N , R and p are

continuous. Equation (5.2) becomes

(5.3) µ(t) V + p(t) =
∂

∂t
V (t, x) −

M(t, x) + R(t, x)

N(t, x)

∂

∂x
V (t, x).

We search for a useful combination triple µ(t), p(t) and V (t, x) to satisfy (5.3). As

before, we approach the search by considering a choice of energy function of the form

(5.4) V (t, x) =

∫

u(t, x) N(t, x) dx

where again the nonzero function u becomes our goal.

Since Vx = u N , condition (5.3) becomes

p(t) = Vt + fVx = Vt −
M

N
Vx = Vt − u M,

which implies

(5.5)
∂

∂x

(

∂

∂t

(
∫

u(t, x) N(t, x) dx

)

− u(t, x) M(t, x)

)

= 0
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ENERGY FUNCTION METHOD 343

and also we seek to have

(5.6) −R(t, x)u(t, x) = µ(t) V (t, x)

Thus, given functions M(t, x), N(t, x), R(t, x) and the unknown u(t, x) together

must satisfy (5.5) and (5.6) in order to reduce the ODE (5.2) to its linear form (5.1).

Example 5.1. Consider

x′ = −
2t + x cos tx + 2 sin tx

t cos tx
.

We shall attempt to use the Energy Method to reduce Example 5.1 to the simpler

linear form (5.1)

m′(t) = µ(t) m(t) + p(t)

where again m(t) is to be the composite of our Energy function V (t, x(t)). Form

(5.1) is suggested by writing (5.2) as N x′ = −M − R where N(t, x) = t cos tx,

M(t, x) = 2t + x cos tx, and R(t, x) = 2 sin tx and noting Rx = 2N . Thus (5.1)

arranged m′ = p+µm has a pattern such that a derivative of the last expression on the

RHS resembles the first term on the LHS. Proceeding, we seek energy V =
∫

µN dx

for some useful u.

Also note the association uN = Vx; thus N is a “derivative” of V ; while in

original (5.2), N is a derivative of R; while in (5.1) m′ is a derivative of the last term

µ m = µV (t, x(t)); which is a sort of transitive identification.

Continuing, as before, we formulate V by parts:

V =

∫

uN dx = uÑ −

∫

uxÑ dx

and differentiate

Vt = utÑ + uÑt −
∂

∂t

∫

uxÑ dx.

Here,

Ñ =

∫

N dx =

∫

t cos tx dx = sin tx =
1

2
R.

And again Vx = uN gives us

x′Vx = uNx′ = u(−M − R)

which in turn produces

(5.7)

Vt + x′Vx = ut

1

2
R + ux cos tx −

∂

∂t

∫

uxÑdx − uM − uR

= ut sin tx + ux cos tx −
∂

∂t

∫

uxÑdx − u(2t + x cos tx) − u2 sin tx

= (ut − 2u) sin tx − 2ut −
∂

∂t

∫

uxÑdx.

At this point, interestingly, we can proceed in two ways:
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a) Suppose we let u(t, x) ≡ 1. Then (5.7) simplifies to

m′ = Vt + x′Vx = 2 sin tx − 2t,

making m = V = Ñ = sin tx; in other terms

(5.8) m′ = −2m − 2t

has the chosen linear form. But also we can approach (5.7) by trying:

b) Let u(t, x) = u(t) while setting u′−2u = 0. Thus u = e2t, and m = V = e2tÑ =

e2t sin tx, and (5.7) becomes m′ = −2t e2t, simple integrable class.

Now reduction a) has solution

e2tm = C − t e2t +
1

2
e2t.

Together with m(t) = V (t, x(t)) = sin tx, we have the implicit primitive

(5.9) e2t [2 sin tx + 2t − 1] = C.S

Similarly, reduction b) has solution

m = e2t

(

1

2
− t

)

+ C,

which leads to (5.9) also (of course).

6. NONLINEAR SOLVABLE DIFFERENTIAL EQUATIONS

The following examples illustrate the scope of this approach beyond the linear

reducible differential equations.

Example 6.1. Suppose

x′ =
(t2x + sin x)

2
− 2t x

t2 + cos x
.

Let N = t2 + cos x, and let J = t2x + sin x. Then x′ has the form

−
J2 + 2t x

Jx

so that we might try for separable reduced form m′ = µ(t)m2. Next we compute the

defining condition on the Energy function

V =

∫

uN dx = uJ −

∫

uxJ dx.

V must satisfy:

Vt = utJ + uJt −
∂

∂t

∫

uxJ dx

= utJ + u2tx −
∂

∂t

∫

uxJ dx

while Vx = uN = uJx.
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ENERGY FUNCTION METHOD 345

These imply

m′ = Vt + x′Vx

= utJ + 2u tx − uJ2 − 2u tx −
∂

∂t

∫

uxJ dx

= ut

[

t2x + sin x
]

− uJ2 −
∂

∂t

∫

uxJ dx.

We see u ≡ 1 works here, producing m′ = −J2 and making energy function V = J .

Our reduced ODE is

(6.1) m′ = −m2,

whose solution is m(t)[t + C] = 1. Thus the general solution of Example 6.1 is

(6.2)
(

t2x + sin x
)

(t + C) = 1.

Example 6.2.

dx = −
1

2

(tx + tanx)3 + 2x

sec2 x + t
dt.

We set

M(t, x) = −
1

2
(tx + tan x)3

− x

and

N(t, x) = sec2 x + t.

We note that
∂

∂x
M(t, x) = −

3

2
(tx + tanx)2

(

sec2 x + t
)

− 1

and
∂

∂t
N(t, x) = 1.

Thus Example 6.2 is neither exact nor reducible to exact by an integrating factor.

However, we initiate the Energy Function Method procedure. Following the argument

used in Example 4.2, we arrive at:

V (t, x) =

∫

u
(

sec2 x + t
)

dt

= u(tx + tanx) −

∫

(tx + tanx)
∂

∂x
u dx (integration by parts).

We note that

∂

∂x
V (t, x) = u

∂

∂x
(tx + tanx) = u

(

sec2 x + t
)

,

∂

∂t
V (t, x) =

∂

∂t
[u(tx + tanx)] −

∂

∂t

[
∫

(tx + tanx)
∂

∂x
u dx

]

.
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Thus

∂

∂t
V (t, x(t)) + f(t, x(t))

∂

∂x
V (t, x(t))

=
∂

∂t

(
∫

uN(t, x) dx

)

− uM(t, x)

=
∂

∂t
[u(tx + tan x)] −

∂

∂t

[
∫

(tx + tan x)
∂

∂x
u dx

]

− u
1

2
(tx + tanx)3

− ux.

Again we choose u(t) = 1. Thus V (t, x) = tx + tan x.

dm

dt
=

∂

∂t
V (t, x(t)) + f(t, x(t))

∂

∂x
V (t, x(t))

=
∂

∂t
[(tx + tan x)] −

1

2
(tx + tanx)3

− x(6.3)

= −
1

2
(tx + tan x)3 = −

1

2
[V (t, x(t))]3 .

The reduced autonomous separable form is

(6.4) dm = −
1

2
m3dt.

Combining (6.3), (6.4) and, of course, definition m(t) = V (t, x(t)) the general implicit

solution to Example 6.2 is

1 = (t + C)(tx + tanx)2.

Remark 6.1. The presented examples in this section illustrate the scope of the

Energy/Lyapunov Function Method for solving nonlinear differential equations in a

systematic and unified way. Moreover, by imitating the above procedure, one can

solve the following nonlinear differential equation

(6.5) dx =
−αJm + Jt

Jx

where J is a smooth function of (t, x),

Jx =
∂

∂x
J, Jt =

∂

∂t
J,

m ∈ R and α is a real number or function of t only.

7. ENERGY FUNCTION METHODS AND EXISTING METHODS OF

SOLVING NONLINEAR DIFFERENTIAL EQUATIONS

The slope of energy function method is further demonstrated by solving variable

separable differential equations, homogeneous differential equations, the Bernoulli

type differential equations, and essentially time invariant differential equations [1,2].
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ENERGY FUNCTION METHOD 347

7.1. Separable Differential Equations [1, 2]. This class of differential equations

are easily reducible to integrable differential equations. Each separable differential

equation is characterized by a rate function f(t, x) which is in fact decomposable into

a product of two functions, one of which is a function of the independent variable t,

and the other is a function of the dependent variable x. Thus, we assume that f(t, x)

is a separable function in t and x variables:

f(t, x) = a(t) b(x)

and

G(x) =

∫ x

c

ds

b(s)

is invertible. In this case, the original problem (2.1) structure now becomes

(7.1) dx = f(t, x) dt = a(t) b(x) dt.

The basic calculations of our so-called Energy Method become:

F (t, m) = p(t) = Vt + f(t, x) Vx

and hence

(7.2) Vt + ab Vx = p(t).

Since the RHS is independent of x, we consider a choice of energy function V (t, x)

to make the LHS independent of x. Here we see that we can satisfy this condition by

choosing V (t, x) = V (x). In this case, Vt = 0 and (7.2) reduces to

(7.3) a(t) b(x) Vx(x) = p(t).

But this would mean b(x) Vx(x) is a constant. We choose 1 for simplicity. Altogether

we now have reduced the situation to p(t) = a(t). Also we have

V (t, x) = V (x) =

∫ x

c

1

b(u)
du.

In other words, as we have seen several times, the energy function V is in the form

of an integral over x. And we finish by solving both m′(t) = p(t) = a(t) which is the

reduced ODE. Also we solve the energy integral

V (x) =

∫ x

c

1

b(u)
du;

and this produces the solution m(t) = V (t, x(t)), i.e.
∫ t

q

a(τ) dτ =

∫ x

c

1

b(u)
du + C.

Remark 7.1. Of course we already knew this was to be the solution to a separable

ODE, but it is still interesting to see this approach and power of systematic unification

under one methodology.
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348 R. D. KIRBY, A. G. LADDE, AND G. S. LADDE

7.2. Homogeneous Differential Equations [1,2]. The class of equations referred

to as homogeneous are reducible to the separable class by known methods; here we

shall analyze them with respect to the Energy Function Approach.

Definition 7.1. A differential equation (2.1) is said to be homogeneous if the rate

function f(t, x) in (2.1) is a homogeneous function of degree zero, that is, f(kt, kx) =

f(t, x) for any nonzero k.

Assumptions. We assume that rate function f(t, x) in (2.1) is homogeneous of de-

gree zero. Further we shall need to assume that (f(1, u) − u) does not vanish; and

that the indefinite integral

G(u) :=

∫ u ds

f(1, s) − s

is invertible.

Let v =
x

t
. Note f(t, x) = f(1, v) by homogeneity. Also note

∂v

∂t
=

−x

t2
and

∂v

∂x
=

1

t
. Consider the type of energy function V (t, x) also homogeneous :

V (t, x) = P (v) = P
(x

t

)

where P has yet to be determined.

The problem of seeking unknown energy function V (t, x) is equivalent to the

problem of seeking unknown function P .

Compute dV as follows:

∂

∂t
V (t, x) =

∂

∂t
P

(x

t

)

= P ′(v)
(

−
x

t2

)

and
∂

∂x
V (t, x) =

∂

∂x
P

(x

t

)

= P ′(v)

(

1

t

)

.

Now dx = f(t, x) and dt = f(1, v) dt. Hence,

dV (t, x) = P ′(v)

[

−
x

t2
dt +

1

t
dx

]

= P ′(v)

[

−
x

t2
dt +

1

t
dx

]

= P ′(v)

[

−
v

t
+

1

t
f(1, v)

]

dt.

We try the indefinite integral function

G(v) :=

∫ v ds

f(1, s) − s

for P (v).
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ENERGY FUNCTION METHOD 349

Here we have Energy

V (t, x) = G
(x

t

)

=

∫ x

t ds

f(1, s) − s
.

We compute

dG

dt
=

dG

dv
[vt + vxx

′]

=
1

[f(1, v) − v]

[

−x

t2
+ f(1, v)

1

t

]

Thus the reduced form is integrable differential equation

(7.4) m′ =
1

t
.

Altogether we have

(7.5) log t =

∫ x

t ds

f(1, s) − s
+ C

for the general solution.

Example 7.1.

dx =
x2

t2
dt.

We note the homogeneity.

Further we see

G(u) :=

∫ u ds

f(1, s) − s
=

∫ u ds

s2 − s

is invertible by partial fractions, i.e.

z = G(u) = log

(

1 −
1

u

)

has inverse

u =
1

1 − ez

Altogether we have

dm(t) = dV (t, x) =
dG

dv
dv =

1

v2 − v

x(x − t)

t3
dt =

1

t
dt.

Solve for m(t) = log(t) + C. Equate to

V = G
(x

t

)

= log

(

1 −
1

x

)

.

The general solution is

c2t = 1 −
t

x
or k tx = x − t, k > 0.

Remark 7.2 ( [1,2]). Of course being separable, this result is also obtainable through

classical methods.
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7.3. The Bernoulli Type Differential Equations [1,2]. We present another sub-

class of differential equations reducible to (5.1). This class of equations are referred

to as Bernoulli differential equations. First, we introduce a definition of a Bernoulli

differential equation.

Definition 7.2. A differential equation is said to be a Bernoulli differential equation

if the rate function f(t, x) in dx = f(t, x) dt is of the following form:

f(t, x) = K(t) x + Q(t) xn

for some real number n 6= 0, 1.

We consider

(7.6) dx = [K(t) x + Q(t) xn] dt.

It is assumed that K and Q are continuous nonzero functions.

We initiate the procedure to reduce the Bernoulli type equation using the Energy

Function Method. We associate a suitable natural Energy/Lyapunov function in a

unified and coherent way. We propose a differential of the form:

dV (t, x) = µ(t) V (t, x) + p(t)(7.7)

=
∂

∂t
V (t, x) + [K(t) x + Q(t) xn]

∂

∂x
V (t, x),

In minimal notation

(7.8) dV = µV + p = Vt + KxVx + Qxn Vx.

We attempt µV = KxVx with µ(t) = δK(t), which gives

(7.9)
Vx

V
=

δ

x
.

From this, it is clear that the quotient of
∂

∂x
V (t, x) with V (t, x) is independent of t.

Therefore, we can assume that V (t, x) ≡ V (x), that is, V (t, x) is independent of t.

This means that Vt = 0 and p(t) = QxnVx from (7.7). Solving (7.9)

(7.10) V (x) = Cxδ, C > 0.

We compute
d

dx
V (x) = Vx = δCxδ−1

and

(7.11) p(t) = δCQ(t) xn+δ−1.

Separating, we have

(7.12) xn+δ−1 =
p(t)

δQ(t)C
.
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ENERGY FUNCTION METHOD 351

We note that the right-hand side of (7.12) is a function of t only. Therefore, we let

δ = 1 − n. Thus (7.11) becomes

p(t) = (1 − n) CQ(t)

dV (t, x) = µ(t) V (t, x) + p(t)

= (1 − n) K(t) Cx1−n + (1 − n) CQ(t).

Letting C = 1 the reduced form is linear:

(7.13) m′(t) = (1 − n) K(t) m(t) + (1 − n) Q(t)

which is a linear solvable form in m(t). Thus the general solution becomes

(7.14) x1−n = m(t) = Φ(t) C + (1 − n)

∫

Φ(t, s) Q(s) ds

where

Φ(t) = exp

[

(1 − n)

∫

P (t) dt

]

and of course m(t) solves (7.13) through classical procedures.

7.4. Essentially Time Invariant Differential Equations [1, 2]. This class of

differential equations is of the following form

(7.15) dx = F (ax + bt + c) dt

where F is smooth enough to assure the existence of solution of (7.15); a, b and c are

given arbitrarily real numbers. Further assume that

G(x) =

∫ x du

aF (u) + b

is in this case, the Energy Function is as follows:

(7.16) V (t, x) = G(ax + bt + c)

where G is an unknown smooth Energy/Lyapunov like function to be determined.

By setting v = ax + bt + c, we have

∂v

∂t
(t, n) =

d

dv
G(v) b,

∂v

∂x
(t, x) =

d

dv
G(v) a(7.17)

∂v

∂t
(t, n) + F (ax + bt + c)

∂v

∂x
(t, x) = b

d

dv
G(v) + F (v)

d

dv
G(v) a

= LG(v)

= [aF (v) + b]
d

dv
G(v).

(7.18)

In this case, the reduced form is assumed to be

(7.19) µ(t) G(v) + P (t) = [aF (v) + b]
d

dx
G(x)
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352 R. D. KIRBY, A. G. LADDE, AND G. S. LADDE

where µ and P are arbitrary functions. We know that the right-hand side is inde-

pendent of t, therefore, one can choose P (t) = P (constant) and µ(t) = 0. In this

situation we have

(7.20) P = [aF (v) + b]
d

dv
G(v)

which implies v

(7.21) G(v) =

∫ v P ds

aF (s) + b
+ C

and hence

(7.22) V (t, x) = G(ax + bt + c) =

∫ ax+bt+c P ds

aF (s) + b
+ C.

The reduced differential equation is

(7.23) dm(t) = P dt.

Hence, the solution of (7.15) is given by

(7.24) G(ax + bt + c) = Pt + C.
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